
ALGORITHM AND ARCHITECTURE DESIGN OF A KNOWLEDGE-BASED VEHICLE
TRACKING FOR INTELLIGENT CRUISE CONTROL

Yi-Min Tsai, Chih-Chung Tsai, Keng-Yen Huang, and Liang-Gee Chen

DSP/IC Design Lab., Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan

{ymtsai,cctsai,kyhuang,lgchen}@video.ee.ntu.edu.tw

ABSTRACT

The paper exploits a vision-based intelligent vehicle cruise control
system from the application level to the architecture level. Firstly,
design considerations of the system are addressed in both com-
puting power and accuracy aspects. Secondly, we present an ef-
ficient knowledge-based front-vehicle tracking algorithm. The al-
gorithm yields below 5% error rate that outperforms the state-of-
the-arts. Thirdly, a run-length-based algorithm optimization flow is
introduced. Finally, specific hardware architecture is developed. It
achieves 1280×960/80FPS and 4096×2160/10FPS requirements for
multi-vehicle tracking tasks.

Index Terms— Intelligent cruise control, vehicle tracking, ar-
chitecture design

1. INTRODUCTION

From the past to the present, vehicular technologies are developed to
guarantee the driving safety and energy efficiency. For safety consid-
eration, active systems, such as Collision Warning Systems (CWS)
and Blind Spot Warning Systems (BSWS), attempt to provide a safer
driving assistance. On the other hand, energy-saving issues have be-
come inevitable and emerging trends [1, 2]. Around 30% of world
energy consumption is due to automotive transportation. Among
various automotive applications, cruise control satisfies both goals
of safety and energy efficiency. The cruise control is originally de-
signed to reduce driver’s fatigue by keeping a constant driving speed.
Adaptive cruise control (ACC) [3] integrates a radar sensor to detect
the preceding target’s position and velocity. It performs appropriate
brakes and throttle actuation to maintain a safe distance. More inter-
estingly, researchers found ACC can also greatly improve the energy
efficiency around 20% [1, 2].

Current ACC mainly uses radars for sensing front targets. How-
ever, radars have small field of view (FOV) and high sensitivity to en-
vironmental interference. Nowadays, owing to the maturity of vision
sensors, video analysis technology is widely used in vehicle recog-
nition and understanding [4,5], which makes it potential to create an
intelligent functionality. The vision-based analysis techniques can
be realized with algorithm development and implemented with inte-
grated circuit design for handling high computation of vision data.

In this paper, we propose a vision-based intelligent cruise con-
trol (ICC) system based on a knowledge-based tracking algorithm.
For ICC, a tracking framework performs position estimation and tra-
jectory prediction on targets. It is also viewed as a pre-processing
stage for understanding objects’ behaviors. Generally, tracking al-
gorithms can be classified into three categories: deterministic meth-
ods, stochastic methods and feature-based methods. Deterministic

methods [6, 7], such as cam-shift and mean-shift, typically track by
performing an iterative search for the similarity between the refer-
enced template and the current target. Stochastic methods use the
state space to model the underlying dynamics of a tracking proce-
dure. The particle filter [8, 9] recursively constructs the posterior
probability density function of the state space using Monte Carlo in-
tegration. Feature-based methods [10,11] track by detecting the fea-
ture correspondence between the referenced patch and the targeted
patch. SIFT has become a dominant way for feature-based vehicle
tracking because of the tolerance on image rotation and scale varia-
tion [10]. However, these methods are incapable of explicitly distin-
guishing target objects from background. They may stick at tracking
a generated false alarm and cause inaccurate positioning. Moreover,
these methods cannot provide an accurate size estimation of targets,
which is critical to ICC.

For advanced ICC in the future, high resolution video should be
supported for long-range tracking. We make an investigation on sys-
tem design challenge and exploit the related hardware architecture
design for high throughput specification with high resolution video.

This paper is organized as follows. We discuss system design
consideration for ICC in Sec. 2. Sec. 3 and Sec. 4 introduce the pro-
posed algorithm and demonstrate experimental results. A hardware-
oriented algorithm optimization is presented in Sec. 5. We describe
the architecture design and implementation in Sec. 6 and Sec. 7. Fi-
nally, Sec. 8 concludes the work.

2. SYSTEM DESIGN CONSIDERATION

For an ICC system, safety and energy efficiency are essential pur-
poses. Two aspects, relative vehicle distance and velocity, should be
concerned while constructing an ICC system.

Firstly, we consider the relative distance. For a vision-based
system, to avoid the difficulties of calibration and synchronization
of a stereo camera, we set up a high resolution monocular camera
instead. Thus, the relative distances Z between the host and a tar-
get vehicle can be estimated according to geometry perspective of a
pinhole model described by Eq. 1.

Z =
fW

w
(1)

where W is the vehicle width in meters and w is the vehicle width in
pixels on image plane. f denotes the camera focal length in pixels.
If a w estimation algorithm induces an n-pixel error, the induced
distance error Zerr is give by Eq. 2 [12]. It can be noted that Zerr

increases as the square distance Z2 and algorithmic estimation error
n increase.

978-1-61284-350-6/11/$26.00 ©2011 IEEE

Zerr = Zn − Z =
fW

fW
Z

+ n
− Z =

nZ2

fW + nZ
≈ nZ2

fW
(2)

Secondly, we discuss the relative velocity. For a vision-based
system, the relative velocity error verr between the host vehicle and
the target vehicle is represented as Eq. 3 [12]. a is denoted as the ac-
celeration. The objective is to decide the optimal Δt that minimizes
verr . By differentiating Eq. 3, the optimal Δt and the minimal verr

are derived in Eq. 4 and Eq. 5, respectively. Since the distance Z
cannot be absolutely converted to an integer pixel value via Eq. 1.
The fractional pixel difference is denoted as image alignment error
serr that leads to estimation uncertainty of relative velocity.

verr =
Z2serr

fWΔt
+

nZv

fW
+

1

2
aΔt (3)

Δt =

√
2Z2serr

fWa
(4)

verr = Z

√
2aserr

fW
+

nZv

fW
(5)

From Eq. 2 and Eq. 5, the induced relative distance and velocity
errors have relation to video (sensor) frame rate, video resolution and
target’s distance. According to Eq. 4, the optimal frame rate (1/Δt)
decrease as Z increases. While designing a reliable ICC system,
it is reasonable to choose a specification that minimizes Zerr and
verr . For instance, considering a typical driving condition: Z =
30, serr = 0.1, W = 1.7m, a = 10m/s2. The specification is
around 10 FPS frame rate with 4k×2k resolution. Furthermore, an
1280×960/80FPS profile also fits a similar driving condition. In this
paper, we develop an efficient tracking framework for vision-based
intelligent cruise control with high resolution, high frame rate and
high throughput requirement. Besides, multi-target tracking is also
supported.

3. PROPOSED KNOWLEDGE-BASED VEHICLE
TRACKING ALGORITHM

The proposed method utilizes features with strong prior-knowledge
as tracking cues. Generally, a vehicle’s rear view contains wind-
shield, rear lights, license plate, shadow on the ground, etc. Intu-
itively, rear lights are the most obvious features with characteristics
of color invariance, constant position, and high visibility. Fig. 1 il-
lustrates a portion of vehicle images with rear views and the mean
image of 200 sampled images. The mean image reveals the two red
rear lights are dominant in the appearance. More importantly, the
vehicle width is just the same as the interval between two rear lights.
According to Eq. 1, the estimated distance Z can be obtained. On
the other hand, the color and installation position of rear lights are
regulated by legislation. Above all, we proposed a knowledge-based
tracking framework based on rear light detection.

The overall algorithm flow is shown in Fig. 2. Firstly, the rear
lights are extracted using L*a*b* color segmentation. Secondly, a
symmetric verification procedure is executed for precise width esti-
mation. Lastly, a temporal filtering is adopted to prevent estimation
glitch and maintain tracking continuity.

3.1. Rear Light Detection

Color segmentation separates the given region of interest (ROI) into
rear lights and other parts. The RGB values are firstly transformed

(a) (b)

Fig. 1. Examples of dominant components. (a) Vehicle’s rear views.
(b) The mean image.

������
��	
�������

�������������
��
���

��

�����
�����

���������

���
��������

����
��������

�����
�
�����

��
�������������	

���������
���	�	
��	�

����� 	����
!���
�	�

��������"��#�
$�������

��������
�"��#�
$�������

�������%��
�����

��

�����&'��

Fig. 2. System block diagram.

into L*a*b* color space to have a strong color discrimination. Since
a* and b* stand for color values on the red-green and the yellow-blue
axes respectively, they are usually employed to identify the ”red”
color. Eq. 6 states the segmentation criterion with adjustable thresh-
olds α and β associated with illumination change. A binarized seg-
mentation map I(x, y) is obtained through pixel-wise comparison.

I(x, y) =

{
1, a∗(x, y) > α ∧ a∗(x, y) − b∗(x, y) > β
0, otherwise

(6)

3.2. Symmetry Verification

The knowledge-based method not only records vehicles’ position but
also estimates their precise width. Knowing that vehicles’ rears are
in general laterally symmetrical, symmetry verification explicitly lo-
cates vertical boundaries of vehicles’ rears via shrinking operators.
The operators morphologically remove isolated color blobs and ex-
tract intact red regions that represents rear lights for measuring the
width of a vehicle.

In a color-segmented ROI, BL and BR are denoted left and right
boundaries of red regions. BU and BD are denoted upper and lower

boundaries. Left and right boundaries are shrunk to form the most
symmetrical appearance inside the ROI. The left and right shrinking
functions are defined in Eq. 7 and Eq. 8 respectively. s means the
edge shrinking value in pixels. The objective is to find sl and sr

such that both SymL(s) and SymR(s) are minimized. sl and sr

decide new boundaries and retrieve a symmetrical axis. The target
width is afterwards defined by the new generated boundaries.

SymL(s) =
BU∑

j=BD

(N−s)/2∑
i=1

I(BL + i + s, j) ⊕ I(BR − i, j),

s = 0, 1, 2, ..., N/4 ∧ N = BR − BL

(7)

SymR(s) =
BU∑

j=BD

(N−s)/2∑
i=1

I(BL + i, j) ⊕ I(BR − i − s, j),

s = 0, 1, 2, ..., N/4 ∧ N = BR − BL

(8)

A FIR temporal filter is used to suppress estimated errors. This
reduces the effect of factor n described in Eq. 2 and Eq. 5. Be-
cause initial region for segmentation can be generated from previous
tracked results, the tracking mechanism maintains temporal coher-
ence.

4. EVALUATION AND EXPERIMENTAL RESULTS

To evaluate whether a tracking algorithm is suitable for cruise appli-
cations, we introduce two objective criteria, width error rate (WER)
and centroid departure rate (CDR). Real test sequences were cap-
tured from a CMOS high-resolution front-mounted camera on a ve-
hicle. The ground truth, including targets’ width and position, is
generated by manually annotating in video frame by frame.

WER is defined as the ratio of the sum of estimated width errors
over the sum of true width of a target during the entire sequence
(Eq. 9). i is denoted frame index and F stands for the total number
of frames. Smaller WER suggests more precise width and smaller
Zerr can be obtained during tracking.

WER =

F∑
i=1

|Widthesti(i) − Widthtrue(i)|
F∑

i=1
Widthtrue(i)

(9)

CDR is defined as the ratio of the sum of estimated centroid
drifting errors over the sum of true half width of a target during the
entire sequence (Eq. 10). CDR is a measurement for the closeness
of the tracked object to the true target. Lower CDR implies a stable
localization of objects.

CDR =

F∑
i=1

|Centroidesti(i) − Centroidtrue(i)|
F∑

i=1
Widthtrue(i)/2

(10)

Table 1 summarizes the accuracy evaluation using a single-target
tracking task. Cam-shift misses trackers within a few frames ow-
ing to the fast moving background and causes over 100% WER and
CDR. Hence, it is excluded from Table 1. As observed, the pro-
posed method outperforms others in both WER and CDR. For far
vehicle tracking scenarios, three algorithms all have less than 8%
WER. However, the particle filter and the SIFT-based tracking have
22.42% and 18.56% CDR respectively for far tracking scenarios. As
for near tracking and overtaken conditions, the WER increases dras-
tically for particle filter and SIFT-based tracking. In addition, these

Table 1. Accuracy comparison to other tracking algorithms.
Algorithm Particle Filter SIFT-based Proposed

WER CDR WER CDR WER CDR
Sequence1 14.04% 25.26% 18.02% 28.32% 0.92% 0.64%
(overtaken)
Sequence2 13.38% 4.36% 10.44% 7.24% 2.59% 1.86%
(near)
Sequence3 7.42% 10.68% 4.02% 8.82% 3.44% 3.20%
(far)
Sequence4 4.30% 22.42% 4.56% 18.56% 3.02% 2.90%
(far)

��������	
�������
���������������
���

��

�������������������
��
������������	

()*+,-

(.),,,-

+.)./*-

0)00*-

1����2��

3�2���1��

1����������������

1�	
�����3�����

���4��
� ��
���������������

���������������	������������$��5����
����� ��������*)(%67�����%���&8

Fig. 4. Software average run-time profiling and distribution.

two algorithms have opposite accuracy between WER and CDR.
The inconsistency implies unreliability for the ICC application. On
the other hand, the proposed method has superior performance with
only 2.81% WER and 2.38% CDR in average. Consequently, the
proposed knowledge-based method is preferred for minimization of
Zerr and resultant verr . Fig. 3 illustrates the tracking results on typ-
ical road and highway at distinct time.

5. HARDWARE-ORIENTED ALGORITHM
OPTIMIZATION

5.1. Software Run-time Analysis

As discussed in Sec. 2, our system aims at 4096×2160/10FPS and
1280×960/80FPS profiles. Fig. 4 shows the average software run-
time and frame rate analysis using single-target tracking task. Run-
time distribution for four algorithmic components is also illustrated.
With software implementation, only 10 to 15 FPS for 1280×960 res-
olution and less than 3 FPS for 4096×2160 resolution are achieved.
Symmetry verification includes isolated blob removal and symmetry
value calculation occupies over 90% computing power. For multi-
target tracking, the run-time is approximately multiplied by the num-
ber of targets. As analyzed, it cannot meet the target specification
even for single-target tracking. Consequently, a hardware-oriented
algorithm optimization scheme and the corresponding hardware de-
velopment are proposed to gain higher computing capability.

5.2. Run-length Domain Processing

We establish a run-length-based algorithm optimization scheme.
Morphological operations and the symmetry verification are inte-
grated with run-length encoding. The run-length encoding benefits
data buffer size. Original data is stored as binaries with data quan-
tity O(N). Run-length encoding compresses the binaries to different
run-length series, which reduces data quantity to O(log2N). For a
1280×960 image, the maximum target size is about 300×200 pix-
els. The original buffer size is around 60Kbits. With run-length
encoding, eight 8-bits lengths are enough to represent a row in the

(a)

(b)

Fig. 3. Tracking results (red bounding boxes) at different time points. (a) Single-target tracking for a near right-turning vehicle. (b) Multi-
target tracking for both near and far vehicles at the same time.

maximum target region. Hence, the buffer size can be reduce to
12.8Kbits, which results in a 78.6% reduction. As for 4096×2160
resolution, around 92.5% memory reduction can be achieved.

The current encoded run-length set is saved to memory if it ex-
ceeds a length threshold. Otherwise, it is combined with the previous
run-length set. The isolated blob removal is operated via such mech-
anism. The length threshold is adjusted dynamically depending on
the size of the tracked ROI. The larger the ROI is, the higher the
threshold is.

The symmetry value is defined as the sum of difference between
left-row’s and right-row’s length values. Therefore, the symmetry
difference can be simply calculated by summing the subtractions of
the first and the second, the third and the forth, ..., and the N−1th

and the Nth smallest length numbers in a row. Fig. 5 shows an ex-
ample for the process. For an original symmetry axis, the codes
of its left-row and right-row sides are {(2,1), (14,0)} and {(16,0),
(3,1)}, respectively. Before substraction, a flip operation is applied
to the right row. Therefore, the symmetry value is thus (3-2)+(16-
14) = 3 pixels. Now if it applies an 1-pixel left-shift operator and the
same flip operation for the right row, the symmetry value becomes
(2-2)+(15-14) = 1 pixel. The 1-pixel left-shift for right row is the
same as shifting the original symmetry axis to the left for 0.5 pix-
els. Finally, the symmetry value of every row in the ROI will be
accumulated to generate a final score. The symmetry axis with the
minimum score is determined as the final symmetry axis. Moreover,
the shrinking operators in Eq. 7 and Eq. 8 can be treated as left-shift
or right-shift operators mentioned here.

6. ARCHITECTURE DESIGN

We develop the Knowledge-based Vehicle Tracking Processor
(KVTP) for the entire framework (Fig. 6). The architecture contains
a system controller, 8-parallel single-port on-chip memory banks,
a temporal filtering module, and three processing engines includ-
ing Color Segmentation Engine (CSE), Run-length Encoding En-
gine (RLEE), Symmetry Engine (SE). The frame data is stored in
an off-chip DRAM memory and is accessed with a vertical raster
scan. KVTP receives initial ROI information as a start signal and ac-
cesses RGB data from the off-chip DRAM. CSE converts pixel value

����

�������5 ��	�����5

��	�����5

9:1; 913:�; 91
:�; 9�:1;

91
:�;9�:1;

"��	����
��

�����&'��

��

���������<�9��;=91
�13;>�
(a)

����

�������5 ��	�����5

��	�����5

9:1; 913:�; 91�:�; 9:1;

91�:�;9:1;

��5���

�����
&'��

��

���������<�9�;=91��13;>1

�����������0)/�

�������������

(b)

Fig. 5. Examples for symmetry value calculation in run-length do-
main. (a) Original. (b) After a left-shift operation.

from RGB to L*a*b* and binarizes the converted value. RLEE en-
codes the 0-1 sequences to run-length segments and dispatchs them
to the parallel banks. SE loads run-length segments from the mem-
ory banks and calculates the symmetry value for each ROI. The final
refined ROI information is generated and adjusted via a 3-tap FIR
temporal filter for both width and position parameters. The output
are fed back as the initial ROI information for the next frame.

6.1. Input Data Flow

In a front-faced captured image, target objects arrange horizontally
(Fig. 7). For a line-based horizontal raster scan, it should buffer un-
processed partial object data if there are multiple targets (Fig. 7(a)).
This increases on-chip memory (Buffer1, Buffer2 and Buffer3).
Therefore, a region-based vertical raster scan is preferred (Fig. 7(b)).
Only one buffer for all objects is adequate (Buffer1). The maximum
memory equals to the size of the largest object. Once a current tar-
get is processed, the memory is released for the next one. The max-
imum target size is 300×200 pixels for 1280×960 resolution, the

�����
����������� ��
�������������	

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������

�)+�?������$�
8�
����������
1�
���������������� ��

!������ �����

.4�������8�
������@���4���	���A������	�
A�	�������AA�

�"���������	�
�������
���

��������	
��������
A�	�������A�

����������B��

��

�����A�	����
��A�

�����������������

(�4����������������

����������	�	��
����
�

��������"������
����

��������

��������� ���������

��������������
�
����
�

?��5���	�4����������������@��	�
$����������?��$�

�%��$�'�����

Fig. 6. Proposed knowledge-based vehicle tracking processor.

���

�������

������1

���

���
���

�������

��
����

(a)

������1

������1

������1

���

���

���

���

��
����

(b)

Fig. 7. Input data flow. (a) Horizontal scan. (b) Vertical scan.

vertical raster scan can save up to 77% on-chip memory (reduced
from 256Kbits to 60Kbits). As for input bandwidth, 24-bit data bus
supports 2.4Gbps bandwidth with 100MHz clock frequency. This is
sufficient for a 4096×2160/10FPS video.

6.2. Color Segmentation Engine

Since RGB to L*a*b* conversion is nonlinear, which involves di-
vision and cubic root calculation. Instead of directly implementing
dividers and cubic rooters, look-up table units (LUT) are adopted.
CSE has three 256-entry LUT units for 8-bit input data.

6.3. Run-length Encoding Engine

The RLEE encodes data along each row horizontally. However,
CSE sends binaries along columns because of the vertical input
raster scan. The mismatch introduces latency and increases mem-
ory buffer size. To minimize latency, data access and encoding pro-
cedure should occur in the same time. Thus, RLEE selects a row
in ROI for running length each cycle. The direct implementation
adopts an enormous multiplexer for row selection and is quite area-
consuming. We propose a shift-length register 1D array instead. As
shown in Fig. 8, the lengths of all rows are shifted cycle by cycle
in a circular FIFO structure. The length value of a row where the
current input binary locates is shifted to the head of the 1D register
array. Only the data at the head register is encoded. By using shift-
length register array, 63% area reduction can be achieved (reduced
from 224.8K to 83.4K). A 1.6Kbit local buffer is utilized for stor-
ing previous encoded length segments for isolated blob removal. If
the current encoded length is smaller than a threshold, it is united
with previous encoded segments. In brief, through run-length en-
coding, it further saves 78.6% (reduced from 60Kbits to 12.8Kbits)

���4���	���
A������	�$A

.4
�
�
���
��8

�

��
��
�
�
@

.4����
��
�����

$��������A�������
���	���������

=

���4���	���A������	�A�	�������AA�

�����4���	�����	������&���

���	�����������������������

������

�������

������� !

�
"��C��
������

�
"��C��
�����	

���C��
�����	

���������4�

����C��
�����	

����C��
�����	

����C��
�����	

���C��
�����	

����C��
�����	

�����C��
�����	

Fig. 8. Run-length encoding engine and the length shifting schedule
in a shift-length register array for each clock cycle.

and 92.5% (reduced from 432Kbits to 32.4Kbits) on-chip memory
for 1280×960 and 4096×2160 resolution, respectively.

6.4. Symmetry Engine

The SE consists of a 32-parallel processing element (PE) array that
increases throughput for supporting multi-target tracking (Fig. 9).
Symmetry value is the sum of subtractions of length. The encoded
length data are loaded from the on-chip memory and then simul-
taneously transferred to all PEs. A 8 to 32 data dispatcher solves
bandwidth mismatch between memory banks and the SE. Each PE
calculates the symmetry value with respect to different symmetry
axes. A comparator tree firstly sorts the loaded length according to
their position in a row. Two neighboring length values are subtracted
afterwards. The subtraction results are summed up and accumulated
for all rows. The accumulated symmetry values of all PEs are then
compared and the smallest one decides the refined symmetry axis.

6.5. N-parallel Memory Bank

The on-chip register file is used to store length codes. To solve
throughput and bandwidth mismatch between RLEE and SE, N-
parallel memory banking technique is utilized. In our experiments,
8-parallel is sufficient to reduce the mismatch. Besides, 8 lengths
are enough to describe a row in the ROI. Therefore, the memory is
separated into 8 banks. The Nth encoded length in a row is saved
to the Nth bank. While encoding, only one bank is enabled to re-
duce power consumption. While symmetry value calculation, the
words of all banks that represent a row are loaded to SE at a time
for increasing throughput. After a target is processed, the 8-parallel
memory banks are reset.

Table 2. Synthesis results and the simulated hardware profile
Frequency (MHz) 200 167 125 100
Gate count (K) 341.9 252.5 230.3 219.4
On-Chip Memory (Kbits) 12.8 12.8 12.8 12.8
Throughput (FPS) 1280×960@162 FPS 1280×960@135 FPS 1280×960@101 FPS 1280×960@81 FPS

4096×2160@22 FPS 4096×2160@18 FPS 4096×2160@14 FPS 4096×2160@11 FPS
�

���
��
��
��
�

==

��

�����A�	����$A(

��

�����A�	����$A*(

��

�����
A�	����$A�

8��.4
��
4*
(�
�
�
�
�
��
�
��
��
�

.4
�
�
���
��8

�

��
��
�
�
@

8
��
�

�

��
�

��
��
��
�
��

��

�����
A�	������A�

���������
�����

��
��

�	

Fig. 9. Symmetry engine and the processing element array.

�	� ���!�

� ���#""

3#$3�!!�

2%�!��&'���(� $ ��

� �����!�

'�%(� �&�! ��

' ��������)��D���(�

�� ���"�)��!��
���

&�*�!�!��������E

1#���!!�

�#+�#

1�#$�,-���

1%%�&.!

+

$1#3�)/�F1�$%*20%
11#��)/�F�3%20*�10%

�G"�$&�

"�4�����
���	���
8�
���

��A

��

�����
A�	���

�
��
4��
�	
��
�

A�
��
��
�	

�
A�

	�
��

Fig. 10. The die micrograph and performance summarization.

7. CHIP IMPLEMENTATION RESULTS

The knowledge-based vehicle tracking processor is implemented in
an UMC 90nm Low-K SP CMOS process. Table 2 lists logic syn-
thesis results with different clock frequency for multi-target track-
ing. The chip size is 2.2×2.2mm2 including IO pads and bonding
pads. The throughput is 5× to 10× compared to software imple-
mentation. Chip power dissipation has relations with number of tar-
gets. It consumes about 645mW for maximum 5 tracking tasks and
23mW for single-target tracking. A total 12.8Kbits 8-parallel mem-
ory buffer supports an object with maximum height 200 pixels. For
4096×2160 specification, two memory banks are combined to sup-
port an object with maximum height 400 pixels. The chip operates
at 100MHz frequency with 2.5V core voltage. The die micrograph
and detailed chip performance are shown in Fig. 10.

8. CONCLUSION

We establish an efficient and reliable vehicle tracking framework.
The contribution is three-fold. (1) An intelligent vision-based
cruise control system is constructed. We exploit relationship be-

tween application requirements and the processing capability. (2)
An application-specific knowledge-based tracking algorithm is pro-
posed considering objects’ appearance. (3) A circuit is designed to
support high specification. We also bring up a run-length domain
algorithm optimization. In the future, the system can be integrated
to develop an intelligent vehicle or other automotive applications.

9. REFERENCES

[1] O. Servin, K. Boriboonsomsin, and M. Barth, “An energy and
emissions impact evaluation of intelligent speed adaptation,”
in Proc. IEEE Intelligent Transportation Systems, Sept. 2006,
pp. 1257–1262.

[2] S. Tsugawa, “An overview on energy conservation in automo-
bile traffic and transportation with ITS,” in Proc. IEEE Vehicle
Electronics, Sept. 2001, pp. 137–142.

[3] A. Vahidi and A. Eskandarian, “Research advances in intelli-
gent collision avoidance and adaptive cruise control,” Intelli-
gent Transportation Systems, IEEE Transactions on, vol. 4, pp.
143–153, Sept. 2003.

[4] S. Sivaraman and M.M. Trivedi, “A general active-learning
framework for on-road vehicle recognition and tracking,” In-
telligent Transportation Systems, IEEE Transactions on, vol.
11, pp. 267 –276, June 2010.

[5] Y.-M. Tsai, K.-Y. Huang, C.-C.Tsai, and L.-G. Chen,
“Learning-based vehicle detection using up-scaling schemes
and predictive frame pipeline structures,” in Proc. IEEE ICPR,
Aug. 2010, pp. 3101–3104.

[6] Y. Changjiang, R. Duraiswami, and L. Davis, “Efficient mean-
shift tracking via a new similarity measure,” in Proc. IEEE
CVPR, June 2005, vol. 1, pp. 176–183.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object
tracking,” PAMI, IEEE Transactions on, vol. 25, pp. 564–577,
May 2003.

[8] P. Perez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based
probabilistic tracking,” in European Conference on Computer
Vision, 2002, pp. 661–675.

[9] Y. Changjiang, R. Duraiswami, and L. Davis, “Fast multiple
object tracking via a hierarchical particle filter,” in Proc. IEEE
ICCV, Oct. 2005, vol. 1, pp. 212–219.

[10] Qiu Tu, Yiping Xu, and Manli Zhou, “Robust vehicle tracking
based on scale invariant feature transform,” in Proc. IEEE In-
ternational Conference on Information and Automation, June
2008, pp. 86–90.

[11] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer Vi-
sion, vol. 60, pp. 91–110, Jan. 2004.

[12] G.P. Stein, O. Mano, and A. Shashua, “Vision-based ACC with
a single camera: bounds on range and range rate accuracy,”
in Proc. IEEE Intelligent Vehicles Symposium, June 2003, pp.
120–125.

